Chem. Ber. 114, 1124 - 1131 (1981)

$Fe_3(CO)_8H_2[\mu-P(CH_3)_2]_2$, ein Eisen-Cluster mit zwei Wasserstoffbrücken

Egbert Keller* und Heinrich Vahrenkamp

Chemisches Laboratorium der Universität Freiburg i. Br., Albertstr. 21, D-7800 Freiburg

Eingegangen am 24. Juli 1980

Bei der thermischen Umsetzung von Fe(CO)₄PMe₂H (4) mit $(\eta^3-C_3H_5)_2Ni$ (5) sowie bei der photochemischen Reaktion zwischen Fe₃(CO)₁₂ und PMe₂H wird die Titelverbindung 8 in geringen Ausbeuten erhalten. Ihre Struktur wurde kristallographisch und NMR-spektroskopisch bestimmt. Die beiden hydridischen Wasserstoffatome nehmen im kristallisierten Zustand je eine Brückenposition zwischen zwei Eisenatomen ein.

Fe₃(CO)₈H₂[µ-P(CH₃)₂]₂, an Iron Cluster with two Hydrogen Bridges

The reaction between $Fe(CO)_4PMe_2H$ (4) and $(\eta^3-C_3H_5)_2Ni$ (5) as well as the photochemical reaction between $Fe_3(CO)_{12}$ and PMe_2H both lead to the title compound 8, which is obtained in low yields. The structure of the complex was determined crystallographically and NMR spectroscopically. In the crystalline state the two hydrogen atoms occupy bridging positions between two iron atoms.

Basenverbrückte Dreikernkomplexe mit sequentiellen Metall-Metall-Bindungen sind bislang nur selten beschrieben worden¹⁶⁰. Ihre Entstehung war in den meisten Fällen unerwartet. Für den Versuch einer gezielten Synthese derartiger Verbindungen bietet sich unter anderem die Propen-Eliminierungs-Methode an^{1,7)}. Im einfachsten Fall sollte die Umsetzung eines Bis(dialkylphosphan)-Komplexes (1) mit einem η³-Allyl-Komplex bzw. die Umsetzung eines Bis(η³-allyl)-Komplexes (2) mit einem PR₂H-Komplex zur Bildung von Verbindungen des Typs **3** führen. Wir untersuchten die Reaktion zwischen **4** und **5** mit dem Ziel der Darstellung von **6**.

Die Umsetzung von 5 mit überschüssigem 4 lieferte ein Substanzgemisch, aus dem zwei Komplexverbindungen durch Chromatographie abgetrennt und isoliert werden konnten. Es handelt sich um den schon bekannten Zweikernkomplex 7⁸, der in Ausbeuten um 10% anfiel, und um den neuen Hydrid-Cluster 8, der nur in Ausbeuten zwischen 2 und 3% zu erhalten war.

Während das Auftreten von 7 nicht weiter überrascht – es ist das Produkt der thermischen Zersetzung von 4 gemäß (1) –, konnte mit der Bildung von 8 nicht gerechnet werden. (2) beschreibt – formal und hypothetisch – seine Entstehung als Aggregation dreier Moleküle von 4 unter Abspaltung von vier CO- und einem PMe₂H-Liganden. Der als Reaktionspartner eingesetzte Allylkomplex 5 nimmt an beiden Reaktionen nur als Katalysator oder Initiator teil. Das molare Verhältnis, in dem die beiden Reaktionspartner eingesetzt werden, scheint keinen Einfluß auf die Bildung des Dreikernkom-

plexes zu haben: Bei zwei Umsetzungen, bei denen einmal die 0.4- und das andere Mal die 0.04-fache molare Menge an 5 zu 4 gegeben wurde, waren die Ausbeuten an 8 praktisch gleich.

8 läßt sich als Derivat von Dodecacarbonyltrieisen auffassen. Dies legte es nahe, seine unabhängige Synthese gemäß (3) zu versuchen. Tatsächlich entstanden geringe Mengen von **8** bei der UV-Bestrahlung von $Fe_3(CO)_{12}$ in Anwesenheit von PMe_2H bei tiefen Temperaturen. Die erzielten Ausbeuten waren jedoch kleiner als 1%, als Nebenprodukt wurde wieder **7** beobachtet.

Die Struktur von 8 wurde mittels Röntgenstrukturanalyse und NMR-Spektroskopie aufgeklärt. Die Ergebnisse der kristallographischen Strukturbestimmung sind in den Tab. 1-3 zusammengefaßt; Abb. 1 verdeutlicht die Atombezeichnung. 8 enthält ein Metallatom-Dreieck mit zwei PMe₂-Brücken. Vergleichbare Komplexe mit nur zwei Brückenatomen aus der V. oder VI. Hauptgruppe des Periodensystems sind bisher nur

selten beschrieben worden⁹⁻¹⁴⁾. Die größte Verwandtschaft zeigen der Os-Komplex 9¹⁰⁾ und der Co-Komplex 10, bei dem es sich möglicherweise ebenfalls um einen Hydrid-Cluster handelt¹⁴⁾.

Atom	x	*	z	8.,	•	833	B 12	813	943
Fel	D. 2076 (D)	0.1555(0)	D. 1641 (D)	2.28(3)	2.46(3)	1.76(3)	-0.68(2)	0.53(2)	0.16(2)
Fe2	0.2368(0)	0.3551(0)	0.2912(0)	2.61(3)	2.31(3)	2.47(3)	-0.59(2)	0.81(2)	0.42(2)
Fe3	0.2373(0)	0.2293(0)	0.4673(0)	2.32(3)	2.76(3)	1.69(2)	-0.66(2)	0.59(2)	0.30(2)
P 1	D.D316(1)	0.1834(1)	0.2951(1)	2.29(5)	3.17(5)	2.47(5)	-0.91(4)	0.73(4)	0.50(4)
P 2	0.4341(1)	0.2905(1)	0.5251(1)	2.65(5)	3.76(6)	2.18(5)	-1.35(5)	0.38(4)	0.22(4)
C11	0.0619(6)	D.1815(4)	-0.0419(7)	3.9(3)	4.0(3)	3.3(2)	-1.8(2)	0.5(2)	0.7(2)
011	-0.0302(6)	0.1943(4)	-0.1764(5)	6.7(3)	7.6(3)	3.3(2)	-3.3(2)	-1.7(2)	2.0(2)
C12	D. 3772(6)	0.1455(4)	0.1100(6)	3.9(3)	3.9(2)	2 7(2)	-1.0(2)	1.5(2)	-0.4(2)
012	0.4845(5)	0.1331(4)	0.0704(6)	5.3(2)	7.6(3)	5.9(3)	-2.2(2)	3.8(2)	-0.B(2)
C13	0.2326(6)	0.0217(4)	0.1417(6)	4.0(3)	3.7(3)	3.0(2)	-1.3(2)	1.3(2)	0.1(2)
013	0.2503(6)	-0.0640(3)	0.1267(6)	7.9(3)	3.0(2)	6.0(3)	-1.4(2)	2.6(2)	0.2(2)
C21	0.3628(6)	0.3597(4)	0.1838(7)	3.6(2)	4.0(3)	3.8(3)	-1.2(2)	1.0(2)	0.8(2)
021	0.4432(6)	0.3671(4)	0.1194(6)	5.5(3)	8.4(3)	6.8(3)	-2.3(2)	3.5(2)	1.7(2)
C 2 2	0.0514(6)	0.3885(4)	0.1184(7)	3.7(2)	2.9(2)	4.2(3)	-0.7(2)	1.5(2)	1.2(2)
022	-0.0668(5)	0.4160(3)	0.0098(5)	3.9(2)	5.0(2)	5.3(2)	-0.4(2)	0.2(2)	2.8(2)
C23	0.2239(8)	0.4801(4)	0.3919(8)	5.3(3)	3.5(3)	4.9(3)	-1.1(2)	2.1(3)	-0.0(2)
023	0.2184(8)	0.5615(4)	0.4543(8)	10.5(4)	3.8(2)	9.8(4)	-2.1(3)	4.4(3)	-2.1(3)
31	0.1716(7)	0.3029(4)	0.6511(7)	4.1(3)	4.7(3)	3.2(2)	-1.1(2)	1.7(2)	0.3(2)
031	0.1331(7)	0.3528(4)	0.7593(6)	8.4(4)	8.5(4)	4.5(2)	-0.4(3)	4.4(2)	-0.7(2)
C 3 2	0.3212(7)	0.1232(%)	0.6046(6)	4.2(3)	6.5(3)	2.5(2)	-0.9(2)	0.5(2)	0.8(2)
032	0.3735(7)	0.0522(4)	0.6762(6)	8.4(3)	5.7(3)	5.3(3)	-0.7(2)	0.5(2)	3.1(2)
C 1	-0.0192(8)	0.0751(5)	0.3301 (8)	5.3(3)	4.9(3)	4.2(3)	-2.8(3)	1.3(2)	0.7(2)
62	-0.1641(6)	0.2680(5)	0.2121(8)	2.5(2)	5.4(3)	4.7(3)	-0.8(2)	1.3(2)	1.2(2)
3	0.5015(11)	0.3770(7)	0.7165(9)	7.0(5)	7.5(5)	3.7(9)	-4.6(4)	1.0(3)	-1.4(3)
C4	0.6224(6)	0.2113(5)	0.5122(9)	2.4(2)	6.4(4)	4.3(3)	-0.8(2)	0.4(2)	1.4(3)
			x	¥	z		•		
		н1 '	0.320(6)	0.153(4) 0.3	157(6)	0.0(9)		
		H2	0.148(6)	0.321(4) 0.1	84(6)	0.4(10)		
		нтт.	-0.0728	0.0928	0.4	156	4.0		
		H12 ^{a)}	0.0906	0.0284	0.9	754	4.0		
		н13 ^{#}}	-0.0846	0.0436	0.2	193	4.0		
		H214)	-0.2309	0.2355	0.1	021	4.0		
		H22 ⁴)	-0.2190	0.2946	0.2	984	4.0		
		H23")	-0.1370	0.3259	0.1	934	4.0		
		H31	0.565(9)	0.412(6) 0.7	00(9)	3(2)		
		H32	0.400(10)	0.430(7) 0.7	35(11)	5(2)		
		H]]	0.589(9)	0.342(6) 0.6	26(11)	4(2)		
		H41	0.692(7)	0.247(5) 0.4	88(8)	2(2)		
		M42	0.619(9)	0.161(6)	0.3	99(10)	4(2)		
		H43	0.684(11)	0.186(7)	0.6	26(12)	2(2)		

Tab. 1. Atomparameter von 8

a) Die Koordinaten dieser Atome wurden berechnet und während der Verfeinerung fixiert.

Im kristallisierten Zustand besitzt **8** in recht guter Näherung eine nicht-kristallographische zweizählige Drehachse, deren Lage durch das Atom Fe3 und den Mittelpunkt zwischen den beiden anderen Eisenatomen definiert ist. Die beiden durch die Symmetrieachse ineinander überführbaren Fe₂P-Dreiecke bilden mit dem Metallatom-Dreieck Interplanarwinkel von jeweils 116°. Beide PMe₂-überbrückten Metall-Metall-Bindungen sind 265 pm lang, ein Wert, der für Eisenkomplexe mit μ -Phosphorbrücken typisch ist^{1,15}. Die dritte Eisen-Eisen-Bindung ist mit 283 pm deutlich länger. Metall-

Abstand	Länge [pm]	Abstand	Länge [pm]
1. Bindungslänge	en	P2-C3	183.1(8)
F-1 F-2		P2-C4	181.5(7)
rei-rez	262.6(1)	C11-011	114 0(7)
Fel-Fe3	264.3(1)	C12-012	114 4(10)
rez-re3	204.2(1)	C13-013	113 9(8)
Fel-Pl	224.0(2)	C21-021	113 1(11)
Fe2-P2	224.1(1)	C27 027	115.0(6)
Fe3-P1	217.8(2)	C22-022	116 2/8)
Fe3-P2	217.5(2)	(2)-02)	111.2(0)
Fe1-C11	177.4(5)	(32-032	113.8(9)
Fel-Cl2	179.5(7)	CJ2 VJ2	113.0(3)
Fe1-C13	178.3(6)	C3-H31	94(10)
Fe2-C21	178.0(8)	C3-H32	106(9)
Fe2-C22	179.3(5)	C3-H33	105(7)
Fe2-C23	176.4(6)	C4-H41	104(9)
Fe1-C31	174.5(6)	C4-#42	106(8)
Fe3-C32	174.7(6)	C4-H43	98(9)
Fe1-H1	156(4)		
Fe2~H2	157(7)		
Fe3-H1	162(5)	Z. einige intramolekulare Kontaktabstände	
Fe3-H2	152 (5)		
P1-C1	182.7(9)	C11-C22	291.3(0)
P1-C2	181.5(5)	C12-C21	289.2(9)

Tab. 2. Atomabstände in 8

Tab. 3. Bindungswinkel in 8

Winkel	Grad	Winkel	Grad	Winke!	Grad	Winkel	Grad
1. an Fel		Fe3-Fe2-P2	52.11(5)	P1-Fe3-P2	144.44(7)	5. an den Carbonyl-C-Atomen	
Fe2-Fe1-Fe3	57.60(3)	Fe3-Fe2-C21	135.8(2)	P1-Fe3-C31	105.4(2)	Fe1-C11-011	177.3(5)
Fe2-Fe1-P1	87.66(5)	Fe3-Fe2-C22	112.7(3)	P1-Fe3-C32	98.9(2)	Fe1-C12-012	175.6(6)
Fe2-Fe1-G11	98.4(2)	Fe3-Fe2-C23	112.5(3)	P1-Fe3-H1	80(2)	Fe1-C13-013	179.1(7)
Fe2-Fe1-C12	83.0(2)	Fe3-Fe2-H2	31(2)	P1-Fe3-H2	77(2)	Fe2-C21-021	176.8(6)
Fe2-Fe1-C13	163.6(2)	P2-5+2-621	95 1(2)	P2-Fe3-C31	99.9(3)	Fe2-C22-022	175.8(5)
Fe2-Fe1-H1	73(Z)	P2-Fe2-027	164 8(3)	P2-Fe3-C32	105.2(2)	Fe2-C23-023	177.8(9)
F=2-Fo1-P1	52 10(4)	P2-Fe2-C23	92.0(2)	P2-Fe3-H1	78(2)	Fe3+C31-031	177.3(7)
Fe3-Fe1-C11	135.5(2)	P2-Fe2-H2	77(2)	P2-Fe3-H2	80(2)	Fe3-C32-032	177.7(5)
Fe3-Fe1-C12	113.7(2)	621-642-622	09 1/3)	C31-Fe3-C32	91.5(3)		
Fe3-Fe1-C13	109.9(2)	(2)-Fe2-C22	96.1(3)	C31-Fe3-H1	172(1)		
Fe3-Fe1-H1	34(2)	C21-Fe2-C23	165(2)	C31-Fe3-H2	86(2)	6. an den Hethyl-C	-Atomen
P1-Fe1-C11	94.4(3)	C22-Fe2-C23	94,3(3)	C32-Fe3-H1	82(2)	P2-C3-H31	110(4)
P1-Fe1-C12	165.8(2)	C22-Fe2-H2	88(2)	C32-Fe3-H2	174(2)	P2-C3-H32	108(4)
P1-Fe1-C13	91.8(2)	621-642-82	09(2)	HI-Fe3-H2	101(3)	P2-C3-H33	115(4)
P1-Fe1-H1	80(2)	223-122-112	30(2)			H31-C3-H32	109(7)
C11-Fe1-C12	97.5(3)	3 an Fei				Н31-С3-Н33	96(7)
C11-Fe1-C13	97.9(3)	<u>3. en res</u>		4an den P	Atomen	H32-C3-H33	117(7)
C11-Fe1-H1	169(2)	Fel-Fe3-Fe2	64.57(3)	Fel-Pl-Fe3	73.68(6)	P2-C4-H41	116(3)
C12-Fe1-C13	94.2(3)	Fel-Fe3-P1	54.23(5)	Fel-Pl-Cl	119.0(2)	P2-C4-H42	117(4)
C12-Fe1-H1	87(2)	Fel-Fej-F2	93.09(5/	Fe1-P1-C2	120.8(3)	P2-C4-H43	107(6)
	21(2)	Fei-Fej-Cji	105.0(2)	Fe3-P1-C1	118.4(2)	1111 of 112	a) (1)
CI3-Fel-HI	91(2)	Fel-Fel-W)	33(1)	Fe3-P1-C2	124.9(2)	H41-C4-H42	91(7)
2 an Fe2		Fel-Fel-H2	76(2)	C1-P1-C2	100.4(3)	H41-C4 H43	100(7)
2. 84 762	(T) (T)			Fe7-P7-F=3	73 49(5)	1142-04-1143	(20(0)
rel-Fez-Fej	57.03(3)	Fe2-Fe3-P1	93.78(5)	Fe2-P2-C3	118.7(3)		
Fel-Fez-Pz	07.03(5)	Fe2-Fe3-P2	54.40(4)	Fe7-P2-C4	121.3(3)		
Fel-Fe2-021	97.7(2)	rez-fej-C31	107.4(3)	Fe3-P2-C3	120.1(4)	7. an den H-Atomen	
Fel-Fe2-022	167 0(3)	rez-rej-632	153.0(3)	Fe3-P2-C4	122.9(3)	Fel-H1-Fe3	113(3)
Fe)-Fe7-K ²	69(2)	F=2-Fe3-H2	10(2)	C3-P2-C4	100.7(4)	Fe2-H2-Fe3	118(3)
· = / / EA //2	0)(L)	re2-re) d2	22122				

Abb. 1. Atomanordnung in 8

Abb. 2. Kalotten- und Kugel-Stab-Modell von 8. Blickrichtung parallel zur Ebene Fe1 – H1 – Fe3, senkrecht zum Vektor Fe1 – Fe3

Metall-Bindungslängen dieser Größenordnung werden in vielen Fällen durch sterische Abstoßung zwischen vicinal gebundenen CO-Gruppen bedingt^{1,15)}. Die kurzen Abstände C11 – C22 und C12 – C21 (290 pm) legen es nahe, daß ein derartiger sterischer Effekt auch in 8 eine Rolle spielt. Bei den Eisen-Phosphor-Abständen läßt sich wieder eine Korrelation zur Zahl der CO-Gruppen am betreffenden Metallatom feststellen¹⁶⁾: Die Tricarbonyleisen-Gruppierungen "produzieren" Fe – P-Bindungslängen von 224 pm, und die vom Dicarbonyleisen-Fragment ausgehenden Fe – P-Bindungen sind mit 218 pm deutlich kürzer.

Die beiden Eisen-Eisen-Bindungen Fe1 – Fe3 und Fe2 – Fe3 sind im kristallisierten Zustand außer durch die PMe₂-Gruppen auch noch durch je einen Hydrid-Liganden überbrückt. Von vergleichbaren Eisen-Komplexen, in denen Hydrid-Brücken neben

weiteren Brückenliganden auftreten, wurden bisher nur bei den Verbindungen 11¹⁷⁾, 12 und 13¹⁸⁾ die Lagen der Wasserstoffatome kristallographisch bestimmt. Wie in diesen Komplexen weist auch in 8 das Gerüst aus den schwereren Atomen (Fe, P, C, O) keine "koordinative Lücke" auf. Die Wasserstoffatome liegen aber recht genau in der Mitte der durch C12, C13, C32 und P2 bzw. C22, C23, C31 und P1 gebildeten "Taschen" (vgl. Abb. 2). Die ermittelten Fe – H-Abstände sind mit durchschnittlich 157 pm um 10-20 pm kleiner als in 11 (180 ± 1 pm) und 12 (171 ± 1 pm) und eher mit den Fe – H-Bindungslängen in 13 (165 ± 5 pm) zu vergleichen.

Im ¹H-NMR-Spektrum erzeugen die beiden Wasserstoffatome ein Signal bei $\delta = -21.56$, das durch Kopplung mit den beiden ³¹P-Kernen zu einem Triplett aufgespalten ist ($J_{PH} = 41.4 \text{ Hz}$). Die Tatsache, daß hier kein Spektrum höherer Ordnung beobachtet wird, läßt vermuten, daß die Wasserstoffatome in Lösung nicht an den kristallographisch bestimmten Positionen fixiert sind. Denn in der im festen Zustand angetroffenen Anordnung bilden die beiden Protonen und die beiden ³¹P-Kerne ein AA'XX'-Spinsystem ($J_{H_1P_1} \neq J_{H_1P_2}$)¹⁹. Erst bei Annahme eines dynamischen Platztausches der beiden Wasserstoffatome (z. B. über eine Zwischenstufe mit zwei terminalen Wasserstoffliganden an Fe3) erhält man im zeitlichen Mittel ein A₂X₂-Spinsystem, das mit dem beobachteten Triplett vereinbar ist.

Die vier Methylgruppen von **8** lassen sich zu zwei chemisch äquivalenten Paaren ordnen (C1/C3 und C2/C4). Entsprechend zeigt das ¹H-NMR-Spektrum im Methylbereich zwei Signale bei $\delta = 1.88$ und 1.30. Beide haben die Form von Pseudo-Tripletts¹⁹; die zusammengesetzten Kopplungskonstanten N betragen 9.4 und 9.2 Hz. Innerhalb der Methylgruppen-Paare besteht somit keine magnetische Äquivalenz (⁴J_{PH} = 0). Die zentralen verbreiterten Linien beider Pseudo-Tripletts sind schwach aufgespalten.

Mit der Bildung von **8** hat die Umsetzung eines PR_2H -Komplexes mit einem η^3 -Allyl-Komplex erneut statt des erwünschten Komplexes eine interessante "Ersatzverbindung" geliefert. Damit ist dieses Verhalten bei der Propen-Eliminierungsmethode inzwischen eher die Regel als die Ausnahme. Weitere Untersuchungen sind nötig zur Klärung der Frage, ob Komplexe mit sequentieller Metall-Metall-Bindung nach dieser Methode darstellbar sind.

Diese Arbeit wurde vom Fonds der Chemischen Industrie und von der Deutschen Forschungsgemeinschaft unterstützt. Für das Massenspektrum sind wir Herrn Dr. P. Merbach, Erlangen, für das PFT-¹H-NMR-Spektrum Herrn Dipl.-Chem. H. Beurich zu Dank verpflichtet. Das Rechenzentrum der Universität Freiburg stellte großzügig Rechenzeit zur Verfügung.

Experimenteller Teil

Geräte und Methoden wie vorstehend⁷). PMe₂H²⁰ und die Komplexe 4²¹ und Fe₃(CO)₁₂²² wurden nach Literaturvorschriften dargestellt. 5²³ wurde durch Umsetzung von Nickelbromid-Etherat mit Allylmagnesiumbromid erhalten.

Octacarbonyl-bis(µ-dimethylphosphido)-di-µ-hydrido-triangulo-trieisen(3 Fe - Fe) (8)

a) Zu 0.65 g (2.8 nmol) 4 in 20 ml Toluol wurden 10 ml einer frisch hergestellten 0.12 M Lösung von 5 in Ether getropft. Gasentwicklung wurde beobachtet, und das Reaktionsgemisch färbte sich dunkel. Die Lösung wurde über Nacht bei Raumtemp, gerührt. Anschließend wurden die flüchtigen Bestandteile i. Vak. entfernt. Der Rückstand wurde über eine 3×250 cm-Kieselgelsäule mit Benzol/Hexan (1:4) chromatographiert. Aus der ersten, blauen Fraktion konnten durch Kristallisation aus Petrolether bei $-80 \,^{\circ}$ C 11 mg (2.3%, bez. auf 4) 8 in Form schwarzer, in dünnen Schichten rötlich durchscheinender Kristalle vom Schmp. 133 - 135 °C gewonnen werden. - IR: 2065 s, 2020 st, 1990 m, 1978 ss, 1971 cm⁻¹ s.

Die zweite, gelbe Fraktion lieferte 64 mg (11%, bez. auf 4) 7, welches 1R-spektroskopisch identifiziert wurde.

b) In einem Duranglas-Schlenkkolben wurde die Lösung von 0.90 g (1.8 mmol) Fe₃(CO)₁₂ in 250 ml Toluol auf -50 °C abgekühlt und mit 1 ml einer 5 M Lösung von PMe₂H in Petrolether versetzt. Das Gemisch wurde von außen 12 h mit einer Hg-Hochdrucklampe bestrahlt. Die aus Lampengefäß und Reaktionskolben gebildete Einheit war mit Aluminiumfolie umwickelt. Nach beendeter Bestrahlung, bei der 100 ml Gas freigesetzt wurden, wurden die flüchtigen Bestandteile i. Vak. entfernt. Die weitere Aufarbeitung entsprach der unter a) beschriebenen: Es wurden 8 mg (1%) 8 und 30 mg (3%) 7 gewonnen.

Kristallographische Daten und Strukturlösung

Raumgruppe PI, Z = 2, a = 948.7(3), b = 1392.5(2), c = 844.1(2) pm, $\alpha = 101.77(1)$, $\beta = 112.83(2)$, $\gamma = 71.89(2)^\circ$, $d_{ber.} = 1.76$, $d_{ger.} = 1.71$ g cm ⁻³, $\mu = 24.6$ cm ⁻¹.

Die Strukturanalyse wurde mit einem Kristall der ungefähren Abmessungen $0.40 \times 0.30 \times 0.18$ mm durchgeführt. Patterson- und Fourier-Synthesen lieferten zunächst die Lagen der Fe-, P-, C-und O-Atome. Die Verfeinerung ihrer Lage- und Schwingungsparameter auf der Basis eines Datensatzes von 3864 unabhängigen, absorptionskorrigierten Reflexen mit $I > 2 \sigma(I)$ konvergierte bei einem *R*-Wert von 0.047. Zur Bestimmung der Wasserstoff-Positionen wurde eine ΔF -Synthese unter ausschließlicher Berücksichtigung der Reflexe mit $\sin \Theta/\lambda < 0.4$ 10⁻² pm⁻¹ durchgeführt²⁴). Von den 14 größten Maxima der Elektronendichtefunktion lagen 12 in der Nähe der Methyl-C-Atome. Das fünft- und das achtstärkste Maximum ließen sich den beiden hydridischen Wasserstoffatomen zuordnen. Die Verfeinerung *aller* Atome nit dem vollen Datensatz (H-Atome isotrop) erniedrigte den *R*-Wert auf 0.042. Sie führte zu vernünftigen Lagen für die beiden eisengebundenen H-Atome, für alle Methyl-H-Atome an C3 und C4 und für drei der sechs Methyl-H-Atome an C1 und C2. Die restlichen drei H-Atome lagen um ca. 40 – 50 pm von den erwarteten Positionen entfernt.

Eine Verfeinerung der Atomparameter mit dem auf kleine sin Θ/λ -Werte reduzierten Datensatz führte zum selben Ergebnis. Die Lagen der sechs Wasserstoffatome an C1 und C2 wurden daraufhin theoretisch berechnet und während der letzten Verfeinerungszyclen (gesamter Datensatz) fixiert. Abschließender *R*-Wert 0.042, Restelektronendichte zwischen + 0.4 und $\leq 0.7 e/10^6$ pm³.

Die Strukturfaktorliste ist bei den Autoren erhältlich.

- ¹⁾ E. Keller und H. Vahrenkamp, Chem. Ber. 112, 2347 (1979).
- ²⁾ C. H. Wei und L. F. Dahl, Inorg. Chem. 9, 1878 (1970).
- ³⁾ P. Braunstein, D. Matt, O. Bars und D. Grandjean, Angew. Chem. 91, 859 (1979); Angew. Chem., Int. Ed. Engl. 18, 797 (1979). ⁴⁾ W. Petz, C. Krüger und R. Goddard, Chem. Ber. 112, 3413 (1979).
- ⁵⁾ L. R. Krauth-Siegel, W. Schulze und M. L. Ziegler, Angew. Chem. 92, 403 (1980); Angew. Chem., Int. Ed. Engl. 19, 397 (1980). ⁶ J. C. T. R. Burckett-St. Laurent, R. J. Haines, C. R. Nolte und N. D. C. T. Steen, Inorg.
- Chem. 19, 577 (1980).
- 7) E. Keller und H. Vahrenkamp, Chem. Ber. 114, 1111 (1981), vorstehend.
- 8) R. G. Hayter, Inorg. Chem. 3, 711 (1964).
- ⁹⁾ F. A. Cotton und J. M. Troup, J. Am. Chem. Soc. 96, 5070 (1974).
- ¹⁰⁾ C. W. Bradford, R. S. Nyholm, G. J. Gainsford, J. M. Guss, P. R. Ireland und R. Mason, J. Chem. Soc., Chem. Commun. 1972, 87.
- ¹¹⁾ M. I. Bruce, B. L. Goodall, G. L. Sheppard und F. G. A. Stone, J. Chem. Soc., Dalton Trans. 1975, 591.
- ¹²⁾ S. Otsuka, Y. Tatsuno, M. Miki, T. Aoki, M. Matsumoto, H. Yoshioka und K. Nakatsu, J. Chem. Soc., Chem. Commun. 1973, 445.
- ¹³⁾ R. B. King und R. H. Reimann, Inorg. Chem. 15, 184 (1976).
- 14) J. C. Burt, R. Boese und G. Schmid, J. Chem. Soc., Dalton Trans. 1978, 1387.
- 15) E. Keller und H. Vahrenkamp, Chem. Ber. 110, 2199 (1978).
- 16) E. Keller und H. Vahrenkamp, Z. Naturforsch., Teil B 33, 537 (1978).
- ¹⁷⁾ R. Bau, B. Don, R. Greatrex, R. J. Haines, R. A. Love und R. D. Wilson, Inorg. Chem. 14, 3021 (1975).
- 18) M. A. Andrews, G. van Buskirk, C. B. Knobler und H. D. Kaesz, J. Am. Chem. Soc. 101, 7245 (1979).
- 19) R. K. Harris, Can. J. Chem. 42, 2275 (1964).
- ²⁰⁾ G. W. Parshall, Inorg. Synth. 11, 157 (1965).
- ²¹⁾ P. M. Treichel, W. K. Dean und W. M. Douglas, Inorg. Chem. 11, 1609 (1972).
- ²²⁾ R. B. King in Organometallic Syntheses, Bd. 1, S. 95, Herausgeber J. J. Eisch und R. B. King, Academic Press, New York und London 1965.
- ²³⁾ G. Wilke und B. Bogdanovic, Angew. Chem. 73, 756 (1961).
- ²⁴⁾ R. J. Doedens, W. T. Robinson und J. A. Ibers, J. Am. Chem. Soc. 89, 4323 (1967).

[248/80]